Bibliography on the Ethical, Legal, and Social Implications of Emerging Portable and Accessible Neuroimaging Technologies
This bibliography contains resources related to the ethical, legal, and social implications (ELSI) of emerging portable and accessible neuroimaging technologies, as well as selected relevant publications from the scientific and medical literatures. The bibliography is focused specifically on the ELSI of portable and accessible neuroimaging, and does not include citations to broader literatures on ELSI of traditional fixed neuroimaging (e.g. the extensive literature on ELSI of incidental findings in MRI). The bibliography also does not include citations to literature on emerging neurotechnologies beyond brain imaging (e.g. neurostimulation). For more general resources on neuroethics, readers might view the resources page of NIH BRAIN Neuroethics. The bibliography contains selected scientific publications related to emerging portable neuroimaging technologies, but is not exhaustive and generally excludes publications that are more technical in nature.
The bibliography is a product of an NIH RF1 grant: Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics Challenges in Field Research with New Populations (NIH Grant #RF1MH123698). The grant is based at the University of Minnesota’s Consortium on Law and Values in Health, Environment & the Life Sciences.
The Bibliography is organized by topical area, with entries listed alphabetically within each category by last name of the first author. You can scroll down or click on each topical icon below to jump to a particular section.
To download the latest version of the bibliography in .PDF format, click here.
Contact│The bibliography will be updated regularly, and suggested additions can be sent to Dr. Francis Shen, francis_shen@hms.harvard.edu. Acknowledgment│Research reported in this document was supported by the National Institute of Mental Health of the National Institutes of Health under Award Number RF1MH123698. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Last Updated│September 22, 2024
Law & Ethics
Although there are established literatures on the ethics of traditional fixed neuroimaging, the literature specific to the ethical, legal, and social implications of highly portable and accessible neuroimaging is only beginning to emerge.
Bannier, E., Barker, G., Borghesani, V., Broeckx, N., Clement, P., Emblem, K. E., Ghosh, S., Glerean, E., Gorgolewski, K. J., Havu, M., Halchenko, Y. O., Herholz, P., Hespel, A., Heunis, S., Hu, Y., Hu, C.-P., Huijser, D., de la Iglesia Vayá, M., Jancalek, R., … Zhu, H. (2021). The Open Brain Consent: Informing Research Participants and Obtaining Consent to Share Brain Imaging Data. Human Brain Mapping, 42(7), 1945–1951. https://doi.org/10.1002/hbm.25351
Beauvais, M. J. S., Knoppers, B. M. & Illes, J. (2021). A Marathon, Not a Sprint–Neuroimaging, Open Science and Ethics. NeuroImage, 236, 118041. https://doi.org/10.1016/j.neuroimage.2021.118041 PMID: 33848622
Bianchi, D. W., Cooper, J. A., Gordon, J. A., Heemskerk, J., Hodes, R., Koob, G. F., Koroshetz, W. J., Shurtleff, D., Sieving, P. A., Volkow, N. D., Churchill, J. D. & Ramos, K. M. (2018). Neuroethics for the National Institutes of Health BRAIN Initiative. Journal of Neuroscience, 38(50), 10583–10585. https://doi.org/10.1523/JNEUROSCI.2091-18.2018 PMID: 30541766
Clark, D. B., Fisher, C. B., Bookheimer, S., Brown, S. A., Evans, J. H., Hopfer, C., Hudziak, J., Montoya, I., Murray, M., Pfefferbaum, A. & Yurgelun-Todd, D. (2017). Biomedical Ethics and Clinical Oversight in Multisite Observational Neuroimaging Studies with Children and Adolescents: The ABCD Experience. Developmental Cognitive Neuroscience, 32, 143–154. https://doi.org/10.1016/j.dcn.2017.06.005 PMID: 28716389
Eke, D., Ochang, P., & Stahl, B. C. (2023). Towards an understanding of global brain data governance: ethical positions that underpin global brain data governance discourse. Frontiers in big data, 6, 1240660. https://doi.org/10.3389/fdata.2023.1240660
Greely, H. T., Grady, C., Ramos, K. M., Chiong, W., Eberwine, J., Farahany, N. A., Johnson, L. S. M., Hyman, B. T., Hyman, S. E., Rommelfanger, K. S. & Serrano, E. E. (2018). Neuroethics Guiding Principles for the NIH BRAIN Initiative. Journal of Neuroscience, 38(50), 10586–10588. https://doi.org/10.1523/JNEUROSCI.2077-18.2018 PMID: 30541767
Gaudry, K. S., Ayaz, H., Bedows, A., Celnik, P., Eagleman, D., Grover, P., Illes, J., Rao, R. P. N., Robinson, J. T., Thyagarajan, K. & The Working Group on Brain-Interfacing Devices in 2040 (2021). Projections and the Potential Societal Impact of the Future of Neurotechnologies. Frontiers in Neuroscience, 15, 658930. https://doi.org/10.3389/fnins.2021.658930 PMCID: PMC8634831
Goldfarb, M. G., & Brown, D. R. (2022). Diversifying Participation: The Rarity of Reporting Racial Demographics in Neuroimaging Research. NeuroImage, 119122. https://doi.org/10.1016/j.neuroimage.2022.119122
Greely, H. T., Ramos, K. M. & Grady, C. (2016). Neuroethics in the Age of Brain Projects. Neuron, 92(3), 637–641. https://doi.org/10.1016/j.neuron.2016.10.048 PMID: 27810008
Ienca, M., Fins, J. J., Jox, R. J., Jotterand, F., Voeneky, S., Andorno, R., ... & Kellmeyer, P. (2022). Towards a Governance Framework for Brain Data. Neuroethics, 15(2), 1-14. https://doi.org/10.1007/s12152-022-09498-8
Janssen, T. W. P., Grammer, J. K., Bleichner, M. G., Bulgarelli, C., Davidesco, I., Dikker, S., Jasińska, K. K., Siugzdaite, R., Vassena, E., Vatakis, A., Zion-Golumbic, E. & van Atteveldt, N. (2021). Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. Mind, Brain and Education, 15(4), 354–370. https://doi.org/10.1111/mbe.12302 PMID: 35875415
Jones, D. T. & Kerber, K. A. (2022). Artificial Intelligence and the Practice of Neurology in 2035: The Neurology Future Forecasting Series. Neurology, 98(6), 238–245. https://doi.org/10.1212/WNL.0000000000013200 PMID: 35131918
Jwa, A. S. & Poldrack, R. A. (2022). The Spectrum of Data Sharing Policies in Neuroimaging Data Repositories. Human Brain Mapping, 1–15. https://doi.org/10.1002/hbm.25803 PMID: 35142409
Krainak, D.M., Zeng, R., Li, N. et al. US regulatory considerations for low field magnetic resonance imaging systems. Magn Reson Mater Phy (2023). https://doi.org/10.1007/s10334-023-01083-1
Li, Y., Thompson, W. K., Reuter, C., Nillo, R., Jernigan, T., Dale, A., Sugrue, L. P. & ABCD Consortium. (2021). Rates of Incidental Findings in Brain Magnetic Resonance Imaging in Children. JAMA Neurology, 78(5), 578–587. https://doi.org/10.1001/jamaneurol.2021.0306 PMID: 33749724
Palk, A., Illes, J., Thompson, P. M. & Stein, D. J. (2020). Ethical Issues in Global Neuroimaging Genetics Collaborations. NeuroImage, 221, 117208. https://doi.org/10.1016/j.neuroimage.2020.117208 PMID: 32736000
Parker, T. C., & Ricard, J. A. (2022). Structural racism in neuroimaging: Perspectives and solutions. The Lancet Psychiatry, 9(5). https://doi.org/10.1016/s2215-0366(22)00079-7
Presidential Commission for the Study of Bioethical Issues (2015, March). Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society (Vol. 2). https://bioethicsarchive.georgetown.edu/pcsbi/sites/default/files/GrayMatter_V2_508.pdf
Ramos, K. M., Grady, C., Greely, H. T., Chiong, W., Eberwine, J., Farahany, N. A., Johnson, L. S. M., Hyman, B. T., Hyman, S. E., Rommelfanger, K. S., Serrano, E. E., Churchill, J. D., Gordon, J. A. & Koroshetz, W. J. (2019). The NIH BRAIN Initiative: Integrating Neuroethics and Neuroscience. Neuron, 101(3), 394–398. https://doi.org/10.1016/j.neuron.2019.01.024 PMID: 30731065
Ramos, K. M., Rommelfanger, K. S., Greely, H. T. & Koroshetz, W. J. (2018). Neuroethics and the NIH BRAIN Initiative. Journal of Responsible Innovation, 5(1), 122–130. https://doi.org/10.1080/23299460.2017.1319035 PMID: 30854409
Ricard, J.A., Parker, T.C., Dhamala, E. Kwasa, J., Allsop, A., Holmes, A.J (2023). Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat Neurosci 26, 4–11 https://doi.org/10.1038/s41593-022-01218-y
Robinson, J. T., Rommelfanger, K. S., Anikeeva, P. O., Etienne, A., French, J., Gelinas, J., Grover, P. & Picard, R. (2022). Building a Culture of Responsible Neurotech: Neuroethics as Socio-Technical Challenges. Neuron, S0896-6273(22), 2057–2062. https://doi.org/10.1016/j.neuron.2022.05.005 PMID: 35671759
Rommelfanger, K. S., Jeong, S.-J., Ema, A., Fukushi, T., Kasai, K., Ramos, K. M., Salles, A. & Singh, I. (2018). Neuroethics Questions to Guide Ethical Research in the International Brain Initiatives. Neuron, 100(1), 19–36. https://doi.org/10.1016/j.neuron.2018.09.021 PMID: 30308169
Shen, F. X., Wolf, S. M., Bhavnani, S., Deoni, S., Elison, J. T., Fair, D., Garwood, M., Gee, M. S., Geethanath, S., Kay, K., Lim, K. O., Lockwood Estrin, G., Luciana, M., Peloquin, D., Rommelfanger, K., Schiess, N., Siddiqui, K., Torres, E. & Vaughan, J. T. (2021). Emerging Ethical Issues Raised by Highly Portable MRI Research in Remote and Resource-Limited International Settings. NeuroImage, 238, 118210. https://doi.org/10.1016/j.neuroimage.2021.118210 PMCID: PMC83824873
Shen, F., Wolf, S., Garwood, M., Han, D., Illes, J., Kimberly, W., Klein, E., Rommelfanger, K., Rosen, M., Sheth, K., Torres, E., Tuite, P. & Vaughan, J. (2022). Challenges in Deploying Low-Field and Ultra-Low Field MRI in Research, Clinical Care, Population Screening, and Direct-to-Consumer Use (P15-7.001). Neurology, 98(18 Supplement), 586. https://n.neurology.org/content/98/18_Supplement/586
Shen, F. X., Wolf, S. M., Gonzalez, R. G. & Garwood, M. (2020). Ethical Issues Posed by Field Research Using Highly Portable and Cloud-Enabled Neuroimaging. Neuron, 105(5), 771–775. https://doi.org/10.1016/j.neuron.2020.01.041 PMID: 32135089
Wassenaar, E. B., & Van den Brand, J. G. (2005). Reliability of near-infrared spectroscopy in people with dark skin pigmentation. Journal of clinical monitoring and computing, 19(3), 195–199. https://doi.org/10.1007/s10877-005-1655-0
Selected Guidelines
As neuroimaging research moves out of the lab and into the field, neuroimaging researchers will be confronted with novel ethical and technical challenges. The selected guidelines below provide high-level guidance for addressing those challenges.
American College of Radiology Committee on MR Safety (2020). ACR Manual on MR safety. https://www.acr.org/-/media/ACR/Files/Radiology-Safety/MR-Safety/Manual-on-MR-Safety.pdf
Council for International Organizations of Medical Sciences (2016). International Ethical Guidelines for Health-related Research Involving Humans. https://cioms.ch/wp-content/uploads/2017/01/WEB-CIOMS-EthicalGuidelines.pdf
National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1979, April 18). The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research. https://www.hhs.gov/ohrp/sites/default/files/the-belmont-report-508c_FINAL.pdf
Nuffield Council on Bioethics (2013). Novel Neurotechnologies: Intervening in the Brain. https://www.nuffieldbioethics.org/wp-content/uploads/2013/06/Novel_neurotechnologies_report_PDF_web_0.pdf
O'Shaughnessy, M. R., Johnson, W. G., Tournas, L. N., Rozell, C. J., & Rommelfanger, K. S. (2023). Neuroethics guidance documents: principles, analysis, and implementation strategies. Journal of law and the biosciences, 10(2), lsad025. https://doi.org/10.1093/jlb/lsad025
Participants in the 2006 Georgetown University Workshop on the Ancillary-Care Obligations of Medical Researchers Working in Developing Countries (2008) The Ancillary-Care Obligations of Medical Researchers Working in Developing Countries. PLOS Med 5(5): e90. https://doi.org/10.1371/journal.pmed.0050090 PMID: 18494553
Presidential Commission for the Study of Bioethical Issues (2010, December). New Directions: The Ethics of Synthetic Biology and Emerging Technologies. https://bioethicsarchive.georgetown.edu/pcsbi/sites/default/files/PCSBI-Synthetic-Biology-Report-12.16.10_0.pdf
TRUST Equitable Research Partnerships (2018). Global Code of Conduct for Research in Resource-Poor Settings. https://www.globalcodeofconduct.org/wp-content/uploads/2018/05/Global-Code-of-Conduct-Brochure.pdf
World Health Organization (2011). Standards and Operational Guidance for Ethics Review of Health-Related Research with Human Participants. Retrieved September 12, 2021, from https://www.who.int/publications/i/item/9789241502948
World Medical Association (2013, October). Declaration of Helsinki: ethical principles for medical research involving human subjects. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
Yeung, A. W. K., Singh, P. & Eickhoff, S. B. (2021). The Dissemination of Brain Imaging Guidelines and Recommendations. IBRO Neuroscience Reports, 12, 20–24. https://doi.org/10.1016/j.ibneur.2021.11.003 PMID: 34918005
Portable Neuroimaging Research in Low-Resource Contexts
The increased portability and lower costs of new MRI technologies will allow researchers and clinicians to utilize MRI in low-resource contexts that previously did not have access to MRI. The citations below include articles in which MRI is being used in a wide range of research in low-resource contexts.
Altaf, A., Baqai, M. W., Urooj, F., Alam, M. S., Aziz, H. F., Mubarak, F., Knopp, E. A., Siddiqui, K. M., & Enam, S. A. (2023). Utilization of an ultra-low-field, portable magnetic resonance imaging for Brain Tumor Assessment in lower middle-income countries. Surgical Neurology International, 14, 260. https://doi.org/10.25259/sni_123_2023 PMID: 37560587
DesRoche, C. N., Johnson, A. P., Hore, E. B., Innes, E., Silver, I., Tampieri, D., Kwan, B. Y. M., Ortiz Jimenez, J., Boyd, J. G., & Islam, O. (2023). Feasibility and Cost Analysis of Portable MRI Implementation in a Remote Setting in Canada. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques, 1–27. Advance online publication. https://doi.org/10.1017/cjn.2023.250 PMID: 37434471
DeStigter, K., Pool, K. L., Leslie, A., Hussain, S., Tan, B. S., Donoso-Bach, L., & Andronikou, S. (2021). Optimizing Integrated Imaging Service Delivery by Tier in Low-Resource Health Systems. Insights into Imaging, 12(1), 1-11. https://doi.org/10.1186/s13244-021-01073-8 PMCID: PMC8444174
Fuhrimann, S., Winkler, M. S., Staudacher, P., Weiss, F. T., Stamm, C., Eggen, R. I., Lindh, C. H., Menezes-Filho, J. A., Baker, J. M., Ramírez-Muñoz, F., Gutiérrez-Vargas, R., & Mora, A. M. (2019). Exposure to Pesticides and Health Effects on Farm Owners and Workers From Conventional and Organic Agricultural Farms in Costa Rica: Protocol for a Cross-Sectional Study. JMIR Research Protocols, 8(1), e10914. https://doi.org/10.2196/10914 PMCID: PMC6367668
Harding, L., McFarlane, J., Honey, C. R., McDonald, P. J., & Illes, J. (2023). Mapping the Landscape of Equitable Access to Advanced Neurotechnologies in Canada. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques, 50(s1), s17–s25. https://doi.org/10.1017/cjn.2023.18
Katus, L., Hayes, N. J., Mason, L., Blasi, A., McCann, S., Darboe, M. K., de Haan, M., Moore, S. E., Lloyd-Fox, S., & Elwell, C. E. (2019). Implementing Neuroimaging and Eye Tracking Methods to Assess Neurocognitive Development of Young Infants in Low- and Middle-Income Countries. Gates Open Research, 3, 1113. https://doi.org/10.12688/gatesopenres.12951.2 PMCID: PMC6719506
Looking Towards the Future of MRI in Africa. (2024). Nature Communications, 15(1), 2260. https://doi.org/10.1038/s41467-024-46567-3
Mateen, F. J. (2019). Multiple Sclerosis in Resource-Limited Settings: Research Opportunities in an Unequal World. Neurology, 93(4), 176–180. https://doi.org/10.1212/WNL.0000000000007837 PMID: 31332086
Murali, S., Ding, H., Adedeji, F., Qin, C., Obungoloch, J., Asllani, I., Anazodo, U., Ntusi, N. A. B., Mammen, R., Niendorf, T., & Adeleke, S. (2023). Bringing MRI to low- and middle-income countries: Directions, challenges and potential solutions. NMR in biomedicine, e4992. Advance online publication. https://doi.org/10.1002/nbm.4992
Palzes, V. A., Sagiv, S. K., Baker, J. M., Rojas-Valverde, D., Gutiérrez-Vargas, R., Winkler, M. S., Fuhrimann, S., Staudacher, P., Menezes-Filho, J. A., Reiss, A. L., Eskenazi, B., & Mora, A. M. (2019). Manganese Exposure and Working Memory-Related Brain Activity in Smallholder Farmworkers in Costa Rica: Results from a Pilot Study. Environmental Research, 173, 539–548. https://doi.org/10.1016/j.envres.2019.04.006 PMCID: PMC6581040
Prado, P., Medel, V., Gonzalez-Gomez, R. et al. The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds. Sci Data 10, 889 (2023). https://doi.org/10.1038/s41597-023-02806-8
Yoo, S. H., Choi, K., Nam, S., Yoon, E. K., Sohn, J. W., Oh, B. M., Shim, J., & Choi, M. Y. (2023). Development of Korea Neuroethics Guidelines. Journal of Korean medical science, 38(25), e193. https://doi.org/10.3346/jkms.2023.38.e193 PMID: 37365727
Portable MRI
Multiple research teams are actively developing more portable and more accessible magnetic resonance imaging (MRI) technologies. These technologies include low-field MRI, ultra-low field MRI, and more portable high-field MRI. The citations below are selected publications describing these technological advances.
Abbas, A., Hilal, K., Rasool, A. A., Zahidi, U., Shamim, M. S., & Abbas, Q. (2023). Low-field magnetic resonance imaging in a boy with intracranial bolt after severe traumatic brain injury: illustrative case, Journal of Neurosurgery: Case Lessons, 6(1), CASE23225. https://doi.org/10.3171/CASE23225 PMID: 37392768
Aggarwal, P. P. K., Jimeno, M. M., & Geethanath, S. (2023). Repeatability of image quality in very low field MRI. arXiv preprint arXiv:2304.07267.
Altaf, A., Baqai, M. W. S., Urooj, F., Alam, M. S., Aziz, H. F., Mubarak, F., Knopp, E., Siddiqui, K., & Enam, S. A. (2023). Intraoperative use of ultra-low-field, portable magnetic resonance imaging - first report. Surgical neurology international, 14, 212. https://doi.org/10.25259/SNI_124_2023 PMID: 37404510
Altaf, A., Shakir, M., Irshad, H. A., Atif, S., Kumari, U., Islam, O., Kimberly, W. T., Knopp, E., Truwit, C., Siddiqui, K. & Enam, S. A. (2024). Applications, Limitations and Advancements of Ultra-Low-Field Magnetic Resonance Imaging: A Scoping Review. Surgical Neurology International,15, 218. https://doi.org/10.25259/SNI_162_2024
Arnold, T. C., Tu, D., Okar, S. V., Nair, G., By, S., Kawatra, K. D., Robert-Fitzgerald, T. E., Desiderio, L. M., Schindler, M. K., Shinohara, R. T., Reich, D. S. & Stein, J. M. (2022). Sensitivity of Portable Low-Field Magnetic Resonance Imaging for Multiple Sclerosis Lesions. NeuroImage: Clinical, 35, 103101. https://doi.org/10.1016/j.nicl.2022.103101 PMID: 35792417
Anoardo, E., & Rodriguez, G. G. (2022). New challenges and opportunities for low-field MRI. Journal of Magnetic Resonance Open, 100086. https://doi.org/10.1016/j.jmro.2022.100086
Ayde, R., Senft, T., Salameh, N. & Sarracanie, M. (2022). Deep Learning for Fast Low-Field MRI Acquisitions. Scientific Reports, 12(1), 11394. https://doi.org/10.1038/s41598-022-14039-7 PMID: 35794175
Basser, P. (2022). Detection of Stroke by Portable, Low-Field MRI: A Milestone in Medical Imaging. Science Advances, 8(16), eabp9307. https://doi.org/10.1126/sciadv.abp9307 PMID: 35442726
Beekman, R., Crawford, A., Mazurek, M. H., Prabhat, A. M., Chavva, I. R., Parasuram, N., Kim, N., Kim, J. A., Petersen, N., de Havenon, A., Khosla, A., Honiden, S., Elliott Miller, P., Wira, C., Daley, J., Payabvash, S., Greer, D. M., Gilmore, E. J., Taylor Kimberly, W. & Sheth, K. N. (2022). Bedside Monitoring of Hypoxic Ischemic Brain Injury Using Low-Field, Portable Brain Magnetic Resonance Imaging After Cardiac Arrest. Resuscitation, S0300-9572(22), 150–4. https://doi.org/10.1016/j.resuscitation.2022.05.002
Birly, S. & Jackson, J. (2024). 107 A Pragmatic Approach to Portable Neuroimaging Utilized in Clinical Research. Journal of Clinical and Translational Science, 8(Suppl 1), 30. https://doi.org/10.1017/cts.2024.105
Bossert, S., Unadkat, P., Sheth, K. N., Sze, G., & Schulder, M. (2023). A novel portable, mobile MRI: Comparison with an established low-field intraoperative MRI system. Asian Journal of Neurosurgery. https://doi.org/10.1055/s-0043-1760857
Chaban, Y. V., Vosshenrich, J., McKee, H., Gunasekaran, S., Brown, M. J., Atalay, M. K., Heye, T., Markl, M., Woolen, S. A., Simonetti, O. P., & Hanneman, K. (2023). Environmental sustainability and MRI: Challenges, opportunities, and a call for action. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/jmri.28994
Chetcuti, K., Chilingulo, C., Goyal, M. S., Vidal, L., O’Brien, N. F., Postels, D. G., Seydel, K. B. & Taylor, T. E. (2022). Implementation of a Low-Field Portable MRI Scanner in a Resource-Constrained Environment: Our Experience in Malawi. American Journal of Neuroradiology, 43(5), 670–674. https://doi.org/10.3174/ajnr.A7494 PMID: 35450856
Cho A. (2023). MRI For All. Science, 379(6634), 748–751. https://doi.org/10.1126/science.adh2295
Cho, S. M., Khanduja, S., Kim, J., Kang, J. K., Briscoe, J., Arlinghaus, L. R., Dinh, K., Kim, B. S., Sair, H. I., Wandji, A.C. N., Moreno, E., Torres, G., Gavito-Higuera, J., Choi, H. A., Pitts, J., Gusdon, A. M. & Whitman, G. J. (2024). Detection of Acute Brain Injury in Intensive Care Unit Patients on ECMO Support Using Ultra-Low-Field Portable MRI: A Retrospective Analysis Compared to Head CT. Diagnostics, 14(6), 606. https://doi.org/10.3390/diagnostics14060606
Cho, S.M., Khanduja, S., Wilcox, C., Dinh, K., Kim, J., Kang, J. K., Chinedozi, I. D., Darby, Z., Acton, M., Rando, H., Briscoe, J., Bush, E., Sair, H. I., Pitts, J., Arlinghaus, L. R., Wandji, A.-C. N., Moreno, E., Torres, G., Akkanti, B., … Whit, G. J. (2024). Clinical Use of Bedside Portable Low-Field Brain Magnetic Resonance Imaging in Patients on ECMO: The Results from Multicenter Safe MRI ECMO Study. https://doi.org/10.21203/rs.3.rs-3858221/v1
Cooley, C. Z., McDaniel, P. C., Stockmann, J. P., Srinivas, S. A., Cauley, S. F., Śliwiak, M., Sappo, C. R., Vaughn, C. F., Guerin, B., Rosen, M. S., Lev, M. H., & Wald, L. L. (2021). A Portable Scanner for Magnetic Resonance Imaging of the Brain. Nature Biomedical Engineering, 5(3), 229–239. https://doi.org/10.1038/s41551-020-00641-5
Cooley, C. Z., Stockmann, J. P., Witzel, T., LaPierre, C., Mareyam, A., Jia, F., Zaitsev, M., Wenhui, Y., Zheng, W., Stang, P., Scott, G., Adalsteinsson, E., White, J. K., & Wald, L. L. (2020). Design and Implementation of a Low-Cost, Tabletop MRI Scanner for Education and Research Prototyping. Journal of Magnetic Resonance, 310, 106625. https://doi.org/10.1016/j.jmr.2019.106625
Cooper, R., Hayes, R., Corcoran, M., Sheth, K. N., Arnold, T. C., Stein, J., Glahn, D. C., & Jalbrzikowski, M. (2024). Bridging the Gap: Improving Correspondence between Low-Field and High-Field Magnetic Resonance Images in Young People. https://doi.org/10.1101/2024.01.05.24300892
de Havenon, A., Parasuram, N. R., Crawford, A. L., Mazurek, M. H., Chavva, I. R., Yadlapalli, V., Iglesias, J. E., Rosen, M. S., Falcone, G. J., Payabvash, S., Sze, G., Sharma, R., Schiff, S. J., Safdar, B., Wira, C., Kimberly, W. T., & Sheth, K. N. (2023). Identification of White Matter Hyperintensities in Routine Emergency Department Visits Using Portable Bedside Magnetic Resonance Imaging. Journal of the American Heart Association, e029242. Advance online publication. https://doi.org/10.1161/JAHA.122.029242
de Leeuw den Bouter, M. L., Ippolito, G., O’Reilly, T. P. A., Remis, R. F., van Gijzen, M. B. & Webb, A. G. (2022). Deep Learning-Based Single Image Super-Resolution for Low-Field MR Brain Images. Scientific Reports, 12(1), 6362. https://doi.org/10.1038/s41598-022-10298-6 PMID: 35430586
DesRoche, C. N., Johnson, A. P., Hore, E. B., Innes, E., Silver, I., Tampieri, D., Kwan, B. Y. M., Ortiz Jimenez, J., Boyd, J. G. & Islam, O. (2023). Feasibility and Cost Analysis of Portable MRI Implementation in a Remote Setting in Canada. The Canadian Journal of Neurological Sciences, 1–27. https://doi.org/10.1017/cjn.2023.250
Deoni, S. C. L., Bruchhage, M. M. K., Beauchemin, J., Volpe, A., D’Sa, V., Huentelman, M. & Williams, S. C. R. (2021). Accessible Pediatric Neuroimaging Using a Low Field Strength MRI Scanner. NeuroImage, 238, 118273. https://doi.org/10.1016/j.neuroimage.2021.118273 PMID: 34146712
Deoni, S. C. L., Medeiros, P., Deoni, A. T., Burton, P., Beauchemin, J., D’Sa, V., Boskamp, E., By, S., McNulty, C., Mileski, W., Welch, B. E. & Huentelman, M. (2022). Development of a Mobile Low-Field MRI Scanner. Scientific Reports, 12(1), 5690. https://doi.org/10.1038/s41598-022-09760-2 PMID: 35383255
Dobrzanski, J., Townsend, A., Shergill, S. & Rodda, J. (2024) A Systematic Review of The Use of Portable Ultra-Low-Field Magnetic Resonance Imaging in Non-Acute Brain Imaging and Its Potential Use in Dementia Assessment. BJPsych Open, 10(S1), S31--S32. doi:10.1192/bjo.2024.138
Ezeala-Adikaibe, B. A., Oti, B., Ohaegbulam, S. C., Okwuonodulu, O. & Ndubuisi, C. (2022). 0.35 Tesla Magnetic Resonance Imaging Findings in a Cohort of 399 Seizure Patients. Experience From a Single Centre in Nigeria. Annals of Clinical and Biomedical Research, 3(1), 188. https://doi.org/10.4081/acbr.2022.188
Frija, G., Blažić, I., Frush, D. P., Hierath, M., Kawooya, M., Donoso-Bach, L., & Brkljačić, B. (2021). How to Improve Access to Medical Imaging in Low- and Middle-Income Countries? EClinicalMedicine, 38. https://doi.org/10.1016/j.eclinm.2021.101034 PMCID: PMC8318869
Geethanath, S., & Vaughan, J. T. (2019). Accessible Magnetic Resonance Imaging: A Review. Journal of Magnetic Resonance Imaging, 49(7), e65–e77. https://doi.org/10.1002/jmri.26638
Gilk, T. & Kanal, E. (2023). MRI Safety Considerations Associated with Low-field MRI: Mostly Good News. Magma, 36(3), 427–428. https://doi.org/10.1007/s10334-023-01079-x
Guallart-Naval, T., Algarín, J. M., Pellicer-Guridi, R., Galve, F., Vives-Gilabert, Y., Bosch, R., Pallás, E., González, J. M., Rigla, J. P., Martínez, P., Lloris, F. J., Borreguero, J., Marcos-Perucho, A., Negnevitsky, V., Martí-Bonmatí, L., Ríos, A., Benlloch, J. M. & Alonso, J. (2022). Portable Magnetic Resonance Imaging of Patients Indoors, Outdoors and at Home. ArXiv:2203.03455 [Physics]. http://arxiv.org/abs/2203.03455
Guallart-Naval, T., O’Reilly, T., Algarín, J. M., Pellicer-Guridi, R., Vives-Gilabert, Y., Craven-Brightman, L., Negnevitsky, V., Menküc, B., Galve, F., Stockmann, J. P., Webb, A. & Alonso, J. (2022). Benchmarking the Performance of a Low-Cost Magnetic Resonance Control System at Multiple Sites in the Open MaRCoS Community. http://arxiv.org/abs/2203.11314
Harper, J. R., Cherukuri, V., O’Reilly, T., Yu, M., Mbabazi-Kabachelor, E., Mulando, R., Sheth, K. N., Webb, A. G., Warf, B. C., Kulkarni, A. V., Monga, V. & Schiff, S. J. (2021). Assessing the Utility of Low Resolution Brain Imaging: Treatment of Infant Hydrocephalus. NeuroImage Clinical, 32, 102896. https://doi.org/10.1016/j.nicl.2021.102896 PMID: 34911199
Hovis, G., Langdorf, M., Dang, E., & Chow, D. (2021). MRI at the Bedside: A Case Report Comparing Fixed and Portable Magnetic Resonance Imaging for Suspected Stroke. Cureus, 13(8). https://doi.org/10.7759/cureus.16904
Huang, S., Ren, Z. H., Obruchkov, S., Gong, Ji., Dykstra, R., & Yu, W. (2019). Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays. Investig Magnetic Resonance Imaging, 23(3), 179–201. https://doi.org/10.13104/imri.2019.23.3.179
Iglesias, J. E., Schleicher, R., Laguna, S., Billot, B., Schaefer, P., McKaig, B., Goldstein, J. N., Sheth, K. N., Rosen, M. S. & Kimberly, W. T. (2022). Accurate Super-Resolution Low-Field Brain MRI. ArXiv:2202.03564 [Cs, Eess]. http://arxiv.org/abs/2202.03564
Islam, O., Lin, A. W., & Bharatha, A. (2023). Potential application of ultra-low field portable MRI in the ICU to improve CT and MRI access in Canadian hospitals: a multi-center retrospective analysis. Frontiers in neurology, 14, 1220091. https://doi.org/10.3389/fneur.2023.1220091 PMID: 37808492
J.M. Algar, T. Guallart-Naval, E. Gastalda-Orqu, R. Bosch, F.J. Lloris, E. Pall, J.P. Rigla, P. Martinez, J. Borreguero, R. Alamar, L. Mart-Bonmat, J.M. Benlloch, F. Galve and J. Alonso. (2023). “Portable MRI for major sporting events -- a case study on the MotoGP World Championship” arXiv:2303.09264v2 [physics.med-ph]. https://arxiv.org/pdf/2303.09264.pdf
Karasawa, T., Saikawa, J., Munaka, T. & Kobayashi, T. (2024). Homogeneous B0 Coil Design Method for Open-Access Ultra-Low Field Magnetic Resonance Imaging: A Simulation Study. Magnetic Resonance Imaging, 112, 128–135. https://doi.org/10.1016/j.mri.2024.07.006
Kawatra, K. D., Okar, S. V., By, S., Mina, Y., Fletcher, A., Azodi, S., Reich, D. S., Nair, G. & Cortese, I. C. M. (2022). Utility and Feasibility of Portable Ultra-Low Field MRI in Patients with Progressive Multifocal Leukoencephalopathy. Neurology, 98(18 Supplement). https://n.neurology.org/content/98/18_Supplement/3385
Kimberly, W. T., Sorby-Adams, A. J., Webb, A. G., Wu, E. X., Beekman, R., Bowry, R., Schiff, S. J., de Havenon, A., Shen, F. X., Sze, G., Schaefer, P., Iglesias, J. E., Rosen, M. S., & Sheth, K. N. (2023). Brain imaging with portable low-field MRI. Nature reviews bioengineering, 1(9), 617–630. https://doi.org/10.1038/s44222-023-00086-w
Krainak, D. M., Zeng, R., Li, N., Woods, T. O. & Delfino, J. G. (2023). US Regulatory Considerations for Low Field Magnetic Resonance Imaging Systems. Magma, 36(3), 347–354. https://doi.org/10.1007/s10334-023-01083-1
Kumar, M., Hu, S., Beyea, S. & Kamal, N. (2023). Is Improved Access to Magnetic Resonance Imaging Imperative for Optimal Ischemic Stroke Care?. Journal of the Neurological Sciences, 446, 120592. https://doi.org/10.1016/j.jns.2023.120592
Kwasa, J., Peterson, H. M., Karrobi, K., Jones, L., Parker, T., Nickerson, N. & Wood, S. (2023). Corrigendum: Demographic Reporting and Phenotypic Exclusion in fNIRS. Frontiers in Neuroscience, 17, 1331375. https://doi.org/10.3389/fnins.2023.1331375
Liu, Y., Leong, A.T., Zhao, Y., Xiao, L., Mak, H.K., Tsang, A.C.O., Lau, G.K., Leung, G.K. & Wu, E.X. (2021). A Low-Cost and Shielding-Free Ultra-Low-Field Brain MRI Scanner. Nature Communications, 12(1), 1-14. https://doi.org/10.1038/s41467-021-27317-1
Marques, J. P., van Kemenade, W., Gazzo, S., Grodzki, D., Knopp, E. A., & Stainsby, J. (2021). ESMRMB Annual Meeting Roundtable Discussion: “When Less is More: The View of MRI Vendors on Low-Field MRI.” Magnetic Resonance Materials in Physics, Biology and Medicine. https://doi.org/10.1007/s10334-021-00938-9 PMCID: PMC8278376
Mašková, B., Rožánek, M., Gajdoš, O., Karnoub, E., Kamenský, V. & Donin, G. (2024). Assessment of The Diagnostic Efficacy of Low-Field Magnetic Resonance Imaging: A Systematic Review. Diagnostics, 14 (14), 1564. https://doi.org/10.3390/diagnostics14141564
Mazurek, M. H., Cahn, B. A., Yuen, M. M., Prabhat, A. M., Chavva, I. R., Shah, J. T., Crawford, A. L., Welch, E. B., Rothberg, J., Sacolick, L., Poole, M., Wira, C., Matouk, C. C., Ward, A., Timario, N., Leasure, A., Beekman, R., Peng, T. J., Witsch, J., … Sheth, K. N. (2021). Portable, Bedside, Low-Field Magnetic Resonance Imaging for Evaluation of Intracerebral Hemorrhage. Nature Communications, 12, 5119. https://doi.org/10.1038/s41467-021-25441-6 PMID: 34433813
Mazurek, M. H., Parasuram, N. R., Peng, T. J., Beekman, R., Yadlapalli, V., Sorby-Adams, A. J., Lalwani, D., Zabinska, J., Gilmore, E. J., Petersen, N. H., Falcone, G. J., Sujijantarat, N., Matouk, C., Payabvash, S., Sze, G., Schiff, S. J., Iglesias, J. E., Rosen, M. S., de Havenon, A., Kimberly, W. T., … Sheth, K. N. (2023). Detection of Intracerebral Hemorrhage Using Low-Field, Portable Magnetic Resonance Imaging in Patients With Stroke. Stroke, 10.1161/STROKEAHA.123.043146. Advance online publication. https://doi.org/10.1161/STROKEAHA.123.043146 PMID: 37795593
McDaniel, P. C., Cooley, C. Z., Stockmann, J. P., & Wald, L. L. (2019). The MR Cap: A Single-Sided MRI System Designed for Potential Point-of-Care Limited Field-of-View Brain Imaging. Magnetic Resonance in Medicine, 82(5), 1946–1960. https://doi.org/10.1002/mrm.27861 PMCID: PMC6660420
Merkle E. M. (2023). The Potential of Low-field MRI in Abdominal Imaging. European Radiology, 33(10), 6981–6983. https://doi.org/10.1007/s00330-023-09676-z
Miyasaka, T., Kajiwara, M., Kawasaki, A., Okamoto, Y. & Terada, Y. (2022). Development of a Car-Mounted Mobile MR Imaging System for Diagnosis of Sports-related Wrist Injury. Magnetic Resonance in Medical Sciences. https://doi.org/10.2463/mrms.tn.2021-0158 PMID: 35473757
Mullen, M., Kobayashi, N., & Garwood, M. (2019). Two-Dimensional Frequency-Swept Pulse with Resilience to Both B1 and B0 Inhomogeneity. Journal of Magnetic Resonance, 299, 93–100. https://doi.org/10.1016/j.jmr.2018.12.017 PMCID: PMC6369020
Norris, D. G., & Webb, A. (2021). This House Proposes that Low Field and High Field MRI are by Destiny Worst Enemies, and Can Never Be the Best of Friends! Magnetic Resonance Materials in Physics, Biology and Medicine. https://doi.org/10.1007/s10334-021-00940-1
Obungoloch, J. & Ahishakiye, E. (2021). Approaches for Image Reconstruction in Low-Field Magnetic Resonance Imaging. Research Square. https://doi.org/10.21203/rs.3.rs-1127552/v1
Parasuram, N. R., Crawford, A. L., Mazurek, M. H., Chavva, I. R., Beekman, R., Gilmore, E. J., ... & Sheth, K. N. (2023). Future of Neurology & Technology: Neuroimaging Made Accessible Using Low-Field, Portable MRI. Neurology. https://doi.org/10.1212/WNL.0000000000207074 PMCID: 36720639
Peng, Y., Li, M., Grandinetti, J., Wang, G. & Jia, X. (2022). Top-Level Design and Simulated Performance of the First Portable CT-MR Scanner. ArXiv:2203.15989 [Physics]. http://arxiv.org/abs/2203.15989
Poojar, P., Oiye, I. E., Aggarwal, K., Jimeno, M. M., Vaughan, J. T. & Geethanath, S. (2024). Repeatability of Image Quality in Very Low-Field MRI. NMR in Biomedicine, 37 (10), e5198. https://doi.org/10.1002/nbm.5198
Prabhat, A. M., Crawford, A. L., Mazurek, M. H., Yuen, M. M., Chavva, I. R., Ward, A., Hofmann, W. V., Timario, N., Qualls, S. R., Helland, J., Wira, C., Sze, G., Rosen, M. S., Kimberly, W. T. & Sheth, K. N. (2021). Methodology for Low-Field, Portable Magnetic Resonance Neuroimaging at the Bedside. Frontiers in Neurology, 12, 760321. https://doi.org/10.3389/fneur.2021.760321 PMID: 34956049
Prado, P., Medel, V., Gonzalez-Gomez, R., Sainz-Ballesteros, A., Vidal, V., Santamaría-García, H., Moguilner, S., Mejia, J., Slachevsky, A., Behrens, M. I., Aguillon, D., Lopera, F., Parra, M. A., Matallana, D., Maito, M. A., Garcia, A. M., Custodio, N., Funes, A. Á., Piña-Escudero, S., Birba, A., … Ibañez, A. (2023). The BrainLat Project, A Multimodal Neuroimaging Dataset of Neurodegeneration from Underrepresented Backgrounds. Nature: Scientific Data, 10(1), 889. https://doi.org/10.1038/s41597-023-02806-8
Roberts, D. R., McGeorge, T., Abrams, D., Hewitt, R., LeBlanc, D., Dennis, W., Rosenberg, M., Kasab, S. A., Holmstedt, C., Spampinato, M. V., Torres-Rosado, S., Ancrum, R., Haschker, M., & Harvey, J. (2023). Mobile point-of-care MRI demonstration of a normal volunteer in a telemedicine-equipped ambulance. Journal of stroke and cerebrovascular diseases, 32(10), 107301. Advance online publication. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107301
Sabir, H., Kipfmueller, F., Bagci, S., Dresbach, T., Grass, T., Nitsch-Felsecker, P., Pantazis, C., Schmitt, J., Schroeder, L. & Mueller, A. (2023). Feasibility of Bedside Portable MRI in Neonates and Children During ECLS. Critical care, 27(1), 134. https://doi.org/10.1186/s13054-023-04416-7
Salameh, N., Lurie, D.J., Ipek, Ö. et al. Exploring the foothills: benefits below 1 Tesla?. Magn Reson Mater Phy (2023). https://doi.org/10.1007/s10334-023-01106-x
Samardzija, A., Selvaganesan, K., Zhang, H. Z., Sun, H., Sun, C., Ha, Y., Galiana, G. & Constable, R. T. (2024). Low-Field, Low-Cost, Point-of-Care Magnetic Resonance Imaging. Annual Review of Biomedical Engineering, 26(1), 67–91. https://doi.org/10.1146/annurev-bioeng-110122-022903
Sarracanie, M., LaPierre, C. D., Salameh, N., Waddington, D. E. J., Witzel, T., & Rosen, M. S. (2015). Low-Cost High-Performance MRI. Scientific Reports, 5(1), 15177. https://doi.org/10.1038/srep15177 PMCID: PMC4606787
Sarracanie, M. & Salameh, N. (2020). Low-Field MRI: How Low Can We Go? A Fresh View on an Old Debate. Frontiers in Physics, 8, 172. https://www.frontiersin.org/article/10.3389/fphy.2020.00172
Sheth, K. N., Yuen, M. M., Mazurek, M. H., Cahn, B. A., Prabhat, A. M., Salehi, S., Shah, J. T., By, S., Welch, E. B., Sofka, M., Sacolick, L. I., Kim, J. A., Payabvash, S., Falcone, G. J., Gilmore, E. J., Hwang, D. Y., Matouk, C., Gordon-Kundu, B., Rn, A. W., … Kundu, P. (2022). Bedside Detection of Intracranial Midline Shift Using Portable Magnetic Resonance Imaging. Scientific Reports, 12(1), 67. https://doi.org/10.1038/s41598-021-03892-7 PMID: 34996970
Shoghli, A., Chow, D., Kuoy, E., & Yaghmai, V. (2023). Current role of portable MRI in diagnosis of acute neurological conditions. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1255858
Sien, M. E., Robinson, A. L., Hu, H. H., Nitkin, C. R., Hall, A. S., Files, M. G., Artz, N. S., Pitts, J. T. & Chan, S. S. (2022). Feasibility of and Experience Using a Portable MRI Scanner in the Neonatal Intensive Care Unit. Archives of Disease in Childhood - Fetal and Neonatal Edition, F1–F6. https://doi.org/10.1136/archdischild-2022-324200 PMID: 35788031
Slabiak, P. (2024). We Hosted a Hackathon to Build a Low-Field MRI. Here’s What Happened. Center for Advanced Imaging Innovation and Research. https://cai2r.net/we-hosted-a-hackathon-to-build-a-low-field-mri/
Torres, E., Froelich, T., Wang, P., DelaBarre, L., Mullen, M., Adriany, G., Pizetta, D. C., Martins, M. J., Vidoto, E. L. G., Tannús, A., & Garwood, M. (2021). B1-Gradient–Based MRI Using Frequency-Modulated Rabi-Encoded Echoes. Magnetic Resonance in Medicine, mrm.29002, 1-12. https://doi.org/10.1002/mrm.29002
Tyszka, J. M. (2021). Compact Brain MRI. Nature Biomedical Engineering, 5(3), 201–202. https://doi.org/10.1038/s41551-021-00702-3 PMID: 33727710
Wald, L. L., McDaniel, P. C., Witzel, T., Stockmann, J. P., & Cooley, C. Z. (2020). Low-Cost and Portable MRI. Journal of Magnetic Resonance Imaging, 52(3), 686–696. https://doi.org/10.1002/jmri.26942
Wang, C. & Zhao, X. (2024). See How Your Body Works in Real Time - Wearable Ultrasound Is on Its Way. Nature, 630, 817-819. https://doi.org/10.1038/d41586-024-02066-5
Webb, A. & Obungoloch, J. (2023). Five Steps to Make MRI Scanners More Affordable to The World. Nature, 615(7952), 391–393. https://doi.org/10.1038/d41586-023-00759-x
Weinreb, J. C. (2021). Low-Cost Low-Field MRI Has Arrived: What Does It Mean for Radiology? Journal of the American College of Radiology. Advance online publication. https://doi.org/10.1016/j.jacr.2021.09.025
Yuen, M. M., Prabhat, A. M., Mazurek, M. H., Chavva, I. R., Crawford, A., Cahn, B. A., Beekman, R., Kim, J. A., Gobeske, K. T., Petersen, N. H., Falcone, G. J., Gilmore, E. J., Hwang, D. Y., Jasne, A. S., Amin, H., Sharma, R., Matouk, C., Ward, A., Schindler, J., … Sheth, K. N. (2022). Portable, Low-Field Magnetic Resonance Imaging Enables Highly Accessible and Dynamic Bedside Evaluation of Ischemic Stroke. Science Advances, 8(16), eabm3952. https://doi.org/10.1126/sciadv.abm3952 PMID: 35442729
Portable MEG
Magnetoencephalography (MEG) measures the magnetic waves created by the brain’s neural activity. Traditional MEG requires a large device, a big liquid helium cooling unit, and a motionless participant. But researchers are now developing portable MEG technology that relaxes those constraints. The citations below are selected publications describing new, portable MEG.
Boto, E., Hill, R. M., Rea, M., Holmes, N., Seedat, Z. A., Leggett, J., Shah, V., Osborne, J., Bowtell, R., & Brookes, M. J. (2021). Measuring Functional Connectivity with Wearable MEG. NeuroImage, 230, 117815. https://doi.org/10.1016/j.neuroimage.2021.117815 PMCID: PMC8216250
Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2018). Moving Magnetoencephalography Towards Real-World Applications with a Wearable System. Nature, 555(7698), 657–661. https://doi.org/10.1038/nature26147 PMCID: PMC6063354
Boto, E., Seedat, Z. A., Holmes, N., Leggett, J., Hill, R. M., Roberts, G., Shah, V., Fromhold, T. M., Mullinger, K. J., Tierney, T. M., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2019). Wearable Neuroimaging: Combining and Contrasting Magnetoencephalography and Electroencephalography. NeuroImage, 201, 116099. https://doi.org/10.1016/j.neuroimage.2019.116099 PMCID: PMC8235152
Hill, R. M., Boto, E., Holmes, N., Hartley, C., Seedat, Z. A., Leggett, J., Roberts, G., Shah, V., Tierney, T. M., Woolrich, M. W., Stagg, C. J., Barnes, G. R., Bowtell, R., Slater, R., & Brookes, M. J. (2019). A Tool for Functional Brain Imaging with Lifespan Compliance. Nature Communications, 10(1), 4785. https://doi.org/10.1038/s41467-019-12486-x PMCID: PMC6831615
Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A. E., Sims, D., Osborne, J., Shah, V., Bowtell, R., & Brookes, M. J. (2020). Multi-Channel Whole-Head OPM-MEG: Helmet Design and a Comparison with a Conventional System. NeuroImage, 219, 116995. https://doi.org/10.1016/j.neuroimage.2020.116995 PMCID: PMC8274815
Hill, R. M., Devasagayam, J., Holmes, N., Boto, E., Shah, V., Osborne, J., Safar, K., Worcester, F., Mariani, C., Dawson, E., Woolger, D., Bowtell, R., Taylor, M. J. & Brookes, M. J. (2022). Using OPM-MEG in Contrasting Magnetic Environments. NeuroImage, 253, 119084. https://doi.org/10.1016/j.neuroimage.2022.119084 PMID: 35278706
Holmes, N., Tierney, T. M., Leggett, J., Boto, E., Mellor, S., Roberts, G., Hill, R. M., Shah, V., Barnes, G. R., Brookes, M. J., & Bowtell, R. (2019). Balanced, Bi-Planar Magnetic Field and Field Gradient Coils for Field Compensation in Wearable Magnetoencephalography. Scientific Reports, 9(1), 14196. https://doi.org/10.1038/s41598-019-50697-w PMCID: PMC6775070
Na, S., Zhang, J. & Fan, B. (2024). Miniaturized Brain Imaging Apparatus Employing Light, Sound, and Magnetic Fields. Springer Nature, 477-- 498. https://doi.org/10.1007/978-3-031-61411-8_18
Paek, A. Y., Kilicarslan, A., Korenko, B., Gerginov, V., Knappe, S., & Contreras-Vidal, J. L. (2020). Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 3420–3423. https://doi.org/10.1109/EMBC44109.2020.9176159
Rea, M., Holmes, N., Hill, R. M., Boto, E., Leggett, J., Edwards, L. J., Woolger, D., Dawson, E., Shah, V., Osborne, J., Bowtell, R., & Brookes, M. J. (2021). Precision Magnetic Field Modelling and Control for Wearable Magnetoencephalography. NeuroImage, 241, 118401. https://doi.org/10.1016/j.neuroimage.2021.118401
Tierney, T. M., Holmes, N., Meyer, S. S., Boto, E., Roberts, G., Leggett, J., Buck, S., Duque- Muñoz, L., Litvak, V., Bestmann, S., Baldeweg, T., Bowtell, R., Brookes, M. J., & Barnes, G. R. (2018). Cognitive Neuroscience Using Wearable Magnetometer Arrays: Non-Invasive Assessment of Language Function. NeuroImage, 181, 513–520. https://doi.org/10.1016/j.neuroimage.2018.07.035 PMCID: PMC61509467
Tierney, T. M., Mellor, S., O’Neill, G. C., Holmes, N., Boto, E., Roberts, G., Hill, R. M., Leggett, J., Bowtell, R., Brookes, M. J., & Barnes, G. R. (2020). Pragmatic Spatial Sampling for Wearable MEG Arrays. Scientific Reports, 10(1), 21609. https://doi.org/10.1038/s41598-020-77589-8 PMCID: PMC7729945
Portable PET
Positron emission tomography (PET) is a method of indirectly measuring brain function by injecting a radioactive tracer into the bloodstream and then tracking how brain cells consume glucose. Traditional PET technology has required a large machine, with patients flat on their back. But new research is exploring the possibility of more portable and wearable PET technology. The citations below are selected publications describing these advances.
Aggarwal, S., Cai, L., Chen, Y., Samanta, S., Qi, A., Qi, K., Komarov, S., Hao, Y., Zhao, T., Laforest, R., O'Sullivan, J. & Tai, Y.C. (2024). Development of A Portable and Versatile PET System for Interactive Point-of-Care Imaging. The Journal of Nuclear Medicine, 65(2), 242533--242533. https://jnm.snmjournals.org/content/65/supplement_2/242533.abstract
Allison, J., Antkowiak, P., Bellam, N., Castro, F., Chen, L., Correia, P., Encarnação, P., Veloso, J., Mięsak, P., Morichi, M., Ren, Z., Simpura, S., Suhonen, E., Venturini, Y., & Watts, S. (n.d.). Wearable Positron Emission Tomography. ATTRACT. https://phase1.attract-eu.com/wp-content/uploads/2019/05/WPET.pdf
Bartlett, E. A., Lesanpezeshki, M., Anishchenko, S., Shkolnik, I., Ogden, R. T., Mann, J. J., Beylin, D., Miller, J. M. & Zanderigo, F. (2024). Dynamic Human Brain Imaging with a Portable PET Camera: Comparison to a Standard Scanner. Journal of Nuclear Medicine: Society of Nuclear Medicine, 65(2), 320–326. https://doi.org/10.2967/jnumed.122.265309
Bauer, C. E., Brefczynski-Lewis, J., Marano, G., Mandich, M.-B., Stolin, A., Martone, P., Lewis, J. W., Jaliparthi, G., Raylman, R. R., & Majewski, S. (2016). Concept of an Upright Wearable Positron Emission Tomography Imager in Humans. Brain and Behavior, 6(9), e00530. https://doi.org/10.1002/brb3.530 PMCID: PMC5036439
Flatz, W., Hinzmann, D., Kampmann, P., Poehlmann, L., Reidler, P., Schlichtiger, J., Kanz, K. G., Ricke, J., Bazarian, J., & Bogner-Flatz, V. (2023). Mobile Computed Tomography at Munich Oktoberfest. The New England journal of medicine, 389(11), 1051–1052. https://doi.org/10.1056/NEJMc2306490 PMID: 37703560
Hwang, S., Song, Y., & Kim, J. (2021). Evaluation of AI-Assisted Telemedicine Service Using a Mobile Pet Application. Applied Sciences, 11(6), 2707. https://doi.org/10.3390/app11062707
Kinahan, P., Majewski, S., Elston, B., Harrison, R., Qi, J., Manjeshwar, R., Dolinsky, S., Stolin, A., & Brefczynski-Lewis, J. (2015). Design Considerations for AMPET: The Ambulatory Micro-Dose, Wearable PET Brain Imager. Journal of Nuclear Medicine, 56(supplement 3), 1540–1540.
Noble, R. M. (2019). Ambulatory Microdose PET: A Wearable PET Scanner for Neurologic Imaging. Journal of Nuclear Medicine Technology, 47(4), 336–340. https://doi.org/10.2967/jnmt.119.228718 PMID: 31182665
Siva, N.K., Bauer, C., Colson. G., Stolin, A., Chandi, S., Melnick, H., Marano, G., Parker, B., Mandich MB, Lewis J.W., Qi, J., Gao, S., Nott, K., Majewski, S. & Brefczynski-Lewis, J.A. (2024). Real-Time Motion-Enabling Positron Emission Tomography of The Brain of Upright Ambulatory Humans. Communications Medicine,4 (117). https://doi.org/10.1038/s43856-024-00547-2
Suzuki, M., Fushimi, Y., Okada, T., Hinoda, T., Nakamoto, R., Arakawa, Y., Sawamoto, N., Togashi, K., & Nakamoto, Y. (2021). Quantitative and Qualitative Evaluation of Sequential PET/MRI Using a Newly Developed Mobile PET System for Brain Imaging. Japanese Journal of Radiology, 39(7), 669–680. https://doi.org/10.1007/s11604-021-01105-9
Tao, W., Weng, F., Chen, G., Lv, L., Zhao, Z., Xie, S., Zan, Y., Xu, J., Huang, Q., & Peng, Q. (2020). Design Study of Fully Wearable High-Performance Brain PETs for Neuroimaging in Free Movement. Physics in Medicine & Biology, 65(13), 135006. https://doi.org/10.1088/1361-6560/ab8c90
Van der Linden, D., Zamansky, A., Hadar, I., Craggs, B., & Rashid, A. (2019). Buddy’s Wearable Is Not Your Buddy: Privacy Implications of Pet Wearables. IEEE Security Privacy, 17(3), 28–39. https://doi.org/10.1109/MSEC.2018.2888783
Yamamoto, S., Honda, M., Oohashi, T., Shimizu, K., & Senda, M. (2011). Development of a Brain PET System, PET-Hat: A Wearable PET System for Brain Research. IEEE Transactions on Nuclear Science, 58(3), 668–673. https://doi.org/10.1109/TNS.2011.2105502
Portable fNIRS
Functional near-infrared spectroscopy (fNIRS) utilizes sensers on the human scalp and optimal imaging to indirectly measure brain function by detecting changes in cerebral blood flow. fNIRS has always been more portable than fixed MRI, MEG, and PET, but new advances are allowing for even more portability at lower costs. The citations below present selected research utilizing portable fNIRS.
Agrò, D., Canicattì, R., Pinto, M., Morsellino, G., Tomasino, A., Adamo, G., Curcio, L., Parisi, A., Stivala, S., Galioto, N., Busacca, A., & Giaconia, C. (2016). Design and Implementation of a Portable fNIRS Embedded System. In A. De Gloria (Ed.), Applications in Electronics Pervading Industry, Environment and Society 2014 (pp. 43–50). Springer International Publishing. https://doi.org/10.1007/978-3-319-20227-3_6
Arakawa, T., Hibi, R., & Fujishiro, T. (2019). Psychophysical Assessment of a Driver’s Mental State in Autonomous Vehicles. Transportation Research Part A: Policy and Practice, 124, 587–610. https://doi.org/10.1016/j.tra.2018.05.003
Ayaz, H., Dehais, F., Pilloni, G., Charvet, L. & Bikson M. (2024). Editorial: Neurotechnology for Sensing The Brain Out of The Lab: Methods and Applications for Mobile Functional Neuroimaging. Frontiers in Neuroergonomics, 5. https://doi.org/10.3389/fnrgo.2024.1454894
Baker, J. M., Rojas, -Valverde Daniel, Guti, érrez R., Winkler, M., Fuhrimann, S., Eskenazi, B., Reiss, A. L., & Mora, A. M. (n.d.). Portable Functional Neuroimaging as an Environmental Epidemiology Tool: A How-To Guide for the Use of fNIRS in Field Studies. Environmental Health Perspectives, 125(9), 094502. https://doi.org/10.1289/EHP2049 PMCID: PMC5915206
Barreto, C. & Soltanlou, M. (2022). Functional Near-Infrared Spectroscopy as a Tool to Assess Brain Activity in Educational Settings: An Introduction for Educational Researchers. South African Journal of Childhood Education, 12(1), 10. https://doi.org/10.4102/sajce.v12i1.1138
Bergen-Cico, D., Hirshfield, L., & Costa, M. (2018). Measuring the Neural Correlates of Mindfulness with Functional Near-Infrared Spectroscopy In D. Grimes, Q. Wang & H. Lin (Eds.), Empirical Studies of Contemplative Practices (pp. 117–145). Nova Science Publishers.
Blasi, A., Lloyd-Fox, S., Katus, L., & Elwell, C. E. (2019). FNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics, 6(3), 89. https://doi.org/10.3390/photonics6030089 PMCID: PMC7745110
Brandt-Rauf, P.W. & Ayaz, H. Occupational Health and Neuroergonomics: The Future of Wearable Neurotechnologies at the Workplace. Journal of Occupational and Environmental Medicine, 66(6), 456--460. DOI: 10.1097/JOM.0000000000003080
Burgess, P. W., Crum, J., Pinti, P., Aichelburg, C., Oliver, D., Lind, F., Power, S., Swingler, E., Hakim, U., Merla, A., Gilbert, S., Tachtsidis, I. & Hamilton, A. (2022). Prefrontal Cortical Activation Associated with Prospective Memory While Walking Around A Real-World Street Environment. NeuroImage, 258, 119392. https://doi.org/10.1016/j.neuroimage.2022.119392 PMID: 35714887
Fishell, A. K., Arbeláez, A. M., Valdés, C. P., Burns-Yocum, T. M., Sherafati, A., Richter, E. J., Torres, M., Eggebrecht, A. T., Smyser, C. D., & Culver, J. P. (2020). Portable, Field-Based Neuroimaging Using High-Density Diffuse Optical Tomography. NeuroImage, 215, 116541. https://doi.org/10.1016/j.neuroimage.2020.116541
Friesen, C. L., Lawrence, M., Ingram, T. G. J., Smith, M. M., Hamilton, E. A., Holland, C. W., Neyedli, H. F. & Boe, S. G. (2022). Portable Wireless and Fibreless fNIRS Headband Compares Favorably to a Stationary Headcap-Based System. PLOS ONE, 17(7), e0269654. https://doi.org/10.1371/journal.pone.0269654 PMID: 35834524
Herold, F., Wiegel, P., Scholkmann, F., & Müller, N. G. (2018). Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise–Cognition Science: A Systematic, Methodology-Focused Review. Journal of Clinical Medicine, 7(12), 466. https://doi.org/10.3390/jcm7120466 PMCID: PMC6306799
Holmes, M., Aalto, D. & Cummine, J. (2024). Opening the Dialogue: A Preliminary Exploration of Hair Color, Hair Cleanliness, Light, and Motion Effects on fNIRS Signal Quality. PLOS ONE, 19(5), e0304356. https://doi.org/10.1371/journal.prone.0304356 PMID: 38781258
Huve, G., Takahashi, K., & Hashimoto, M. (2017). Brain Activity Recognition with a Wearable fNIRS Using Neural Networks. 2017 IEEE International Conference on Mechatronics and Automation, 1573–1578. https://doi.org/10.1109/ICMA.2017.8016051
Ishida, M., Ushioda, S., Nagasawa, Y., Komuroa, Y., Tang, Z., Hu, L., Tamura, T., & Sakatani, K. (2020). Development of an IoT-Based Monitoring System for Healthcare: A Preliminary Study. In P.-D. Ryu, J. C. LaManna, D. K. Harrison, & S.-S. Lee (Eds.), Oxygen Transport to Tissue XLI (pp. 291–297). Springer International Publishing. https://doi.org/10.1007/978-3-030-34461-0_37
Jasińska, K. K. & Guei, S. (2018). Neuroimaging Field Methods Using Functional Near Infrared Spectroscopy (NIRS) Neuroimaging to Study Global Child Development: Rural Sub-12 Saharan Africa. Journal of Visualized Experiments: JoVE, 132, e57165. https://doi.org/10.3791/57165 PMID: 29443053
Kassab, A., Hinnoutondji Toffa, D., Robert, M., Lesage, F., Peng, K. & Khoa Nguyen, D. (2021). Hemodynamic Changes Associated with Common EEG Patterns in Critically Ill Patients: Pilot Results from Continuous EEG-fNIRS Study. NeuroImage : Clinical, 32, 102880. https://doi.org/10.1016/j.nicl.2021.102880 PMID: 34773798
Kazazian, K., Abdalmalak, A., Novi, S. L., Norton, L., Moulavi-Ardakani, R., Kolisnyk, M., Gofton, T. E., Mesquita, R. C., Owen, A. M. & Debicki, D. B. (2024). Functional Near-infrared Spectroscopy: A Novel Tool for Detecting Consciousness After Acute Severe Brain Injury. Proceedings of the National Academy of Sciences of the United States of America, 121(36), e2402723121. https://doi.org/10.1073/pnas.2402723121
Kwasa, J., Peterson, H. M., Karrobi, K., Jones, L., Parker, T., Nickerson, N., & Wood, S. (2023). Demographic reporting and phenotypic exclusion in fNIRS. Frontiers in neuroscience, 17, 1086208. https://doi.org/10.3389/fnins.2023.1086208
Kopton, I. M., & Kenning, P. (2014). Near-Infrared Spectroscopy (NIRS) as a New Tool for Neuroeconomic Research. Frontiers in Human Neuroscience, 8, 549. https://doi.org/10.3389/fnhum.2014.00549 PMCID: PMC4124877
Krampe, C., Gier, N. R., & Kenning, P. (2018). The Application of Mobile fNIRS in Marketing Research—Detecting the “First-Choice-Brand” Effect. Frontiers in Human Neuroscience, 12, 433. https://doi.org/10.3389/fnhum.2018.00433 PMCID: PMC6222120
Kwasa, J., Peterson, H. M., Karrobi, K., Jones, L., Parker, T., Nickerson, N., & Wood, S. (2023). Demographic reporting and phenotypic exclusion in fNIRS. Frontiers in neuroscience, 17, 1086208. https://doi.org/10.3389/fnins.2023.1086208
Li, C., Su, M., Xu, J., Jin, H., & Sun, L. (2020). A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering: 28(2), 531–540. https://doi.org/10.1109/TNSRE.2020.2965628 PMID: 31940543
Lühmann, A. von, Lühmann, A. von, Zimmermann, B. B., Ortega-Martinez, A., Perkins, N., Yücel, M. A., Yücel, M. A., Boas, D. A., & Boas, D. A. (2020). Towards Neuroscience in the Everyday World: Progress in Wearable fNIRS Instrumentation and Applications [Paper presentation]. Biophotonics Congress: Biomedical Optics 2020, Washington D.C., United States. https://doi.org/10.1364/BRAIN.2020.BM3C.2
Martini, M. & Arias, N. (2021). Near-Infrared Light Spectroscopy and Stimulation in Cognitive Neuroscience: The Need for an Integrative View? Journal of Integrative Neuroscience, 20(4), 1105–1109. https://doi.org/10.31083/j.jin2004111 PMID: 34997733
Meyerding, S. G., & Risius, A. (2018). Reading Minds: Mobile Functional Near-Infrared Spectroscopy as a New Neuroimaging Method for Economic and Marketing Research—A Feasibility Study. Journal of Neuroscience, Psychology, and Economics, 11(4), 197.
Miao, Y. & Radamson, H. H. (2024). Functional Near-Infrared Imaging for Biomedical Applications. IntechOpen. https://doi.org/10.5772/intechopen.1006636
Phillips V, Z., Canoy, R. J., Paik, S. H., Lee, S. H. & Kim, B. M. (2023). Functional Near-Infrared Spectroscopy as a Personalized Digital Healthcare Tool for Brain Monitoring. Journal of Clinical Neurology, 19(2), 115–124. https://doi.org/10.3988/jcn.2022.0406
Pinti, P., Aichelburg, C., Gilbert, S., Hamilton, A., Hirsch, J., Burgess, P., & Tachtsidis, I. (2018). A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. Japanese Psychological Research, 60(4), 347–373. https://doi.org/10.1111/jpr.12206 PMCID: PMC6329605
Pinti, P., Aichelburg, C., Lind, F., Power, S., Swingler, E., Merla, A., Hamilton, A., Gilbert, S., Burgess, P., & Tachtsidis, I. (2015). Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks. Journal of Visualized Experiments, 106, 53336. https://doi.org/10.3791/53336 PMCID: PMC4692764
Piper, S. K., Krueger, A., Koch, S. P., Mehnert, J., Habermehl, C., Steinbrink, J., Obrig, H., & Schmitz, C. H. (2014). A Wearable Multi-Channel fNIRS System for Brain Imaging in Freely Moving Subjects. NeuroImage, 85, 64–71. https://doi.org/10.1016/j.neuroimage.2013.06.062 PMCID: PMC3859838
Quaresima, V., & Ferrari, M. (2019). Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. Organizational Research Methods, 22(1), 46–68. https://doi.org/10.1177/1094428116658959
Sagiv, S. K., Bruno, J. L., Baker, J. M., Palzes, V., Kogut, K., Rauch, S., Gunier, R., Mora, A. M., Reiss, A. L., & Eskenazi, B. (2019). Prenatal Exposure to Organophosphate Pesticides and Functional Neuroimaging in Adolescents Living in Proximity to Pesticide Application. Proceedings of the National Academy of Sciences, 116(37), 18347–18356. https://doi.org/10.1073/pnas.1903940116 PMID: 31451641
Saikia, M. J., Besio, W. G., & Mankodiya, K. (2019). WearLight: Toward a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging. IEEE Transactions on Biomedical Circuits and Systems, 13(1), 91–102. https://doi.org/10.1109/TBCAS.2018.2876089
Saikia, M. J., & Mankodiya, K. (2018). A Wireless fNIRS Patch with Short-Channel Regression to Improve Detection of Hemodynamic Response of Brain. 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques, 90–96. https://doi.org/10.1109/ICEECCOT43722.2018.9001342
Schober, P., & Schwarte, L. A. (2020). Thinking Out of the (Big) Box: A Wearable Near-Infrared Spectroscopy Monitor for the Helicopter Emergency Medical Service. Air Medical Journal, 39(2), 120–123. https://doi.org/10.1016/j.amj.2019.10.002 PMID: 32197689
Si, J., Zhao, R., Zhang, Y., Zuo, N., Zhang, X., & Jiang, T. (2015). A Portable fNIRS System with Eight Channels. Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II, 9305, 93051B. https://doi.org/10.1117/12.2080947
Stuart, S., Belluscio, V., Quinn, J. F., & Mancini, M. (2019). Pre-frontal Cortical Activity During Walking and Turning Is Reliable and Differentiates Across Young, Older Adults and People With Parkinson’s Disease. Frontiers in Neurology, 10, 536. https://doi.org/10.3389/fneur.2019.00536 PMCID: PMC6540937
Tan, S. H. J., Wong, J. N., & Teo, W.-P. (2023). Is neuroimaging ready for the classroom? A systematic review of hyperscanning studies in learning. NeuroImage, 281, 120367. https://doi.org/10.1016/j.neuroimage.2023.120367
Tang, L., Si, J., Sun, L., Mao, G. & Yu, S. (2022). Assessment of the Mental Workload of Trainee Pilots of Remotely Operated Aircraft Using Functional Near-Infrared Spectroscopy. BMC Neurology, 22(1), 160. https://doi.org/10.1186/s12883-022-02683-5 PMID: 35490209
Tsow, F., Kumar, A., Hosseini, S. H., & Bowden, A. (2021). A Low-Cost, Wearable, Do-it-Yourself Functional Near-Infrared Spectroscopy (DIY-fNIRS) Headband. HardwareX, 10, e00204. https://doi.org/10.1016/j.ohx.2021.e00204
Von Lühmann, A., Herff, C., Heger, D., & Schultz, T. (2015). Toward a Wireless Open Source Instrument: Functional Near-infrared Spectroscopy in Mobile Neuroergonomics and BCI Applications. Frontiers in Human Neuroscience, 9, 617. https://doi.org/10.3389/fnhum.2015.00617 PMCID: PMC6540937
Wang, J., Gao, X., Xiang, Z., Sun, F., & Yang, Y. (2023). Evaluation of consciousness rehabilitation via neuroimaging methods. Frontiers in human neuroscience, 17, 1233499. https://doi.org/10.3389/fnhum.2023.1233499 PMID: 37780959
Wang, Q., Zhu, G.-P., Yi, L., Cui, X.-X., Wang, H., Wei, R.-Y., & Hu, B.-L. (2020). A Review of Functional Near-Infrared Spectroscopy Studies of Motor and Cognitive Function in Preterm Infants. Neuroscience Bulletin, 36(3), 321–329. https://doi.org/10.1007/s12264-019-00441-1 PMCID: PMC7056771
Wheelock, M. D., Culver, J. P., & Eggebrecht, A. T. (2019). High-Density Diffuse Optical Tomography for Imaging Human Brain Function. Review of Scientific Instruments, 90(5), 051101. https://doi.org/10.1063/1.5086809 PMCID: PMC6533110
Wyser, D. G., Lambercy, O., Scholkmann, F., Wolf, M., & Gassert, R. (2017). Wearable and Modular Functional Near-Infrared Spectroscopy Instrument with Multidistance Measurements at Four Wavelengths. Neurophotonics, 4(4), 041413. https://doi.org/10.1117/1.NPh.4.4.041413 PMCID: PMC5562388
Yaqub, M. A., Woo, S.-W., & Hong, K.-S. (2020). Compact, Portable, High-Density Functional Near-Infrared Spectroscopy System for Brain Imaging. IEEE Access, 8, 128224–128238. https://doi.org/10.1109/ACCESS.2020.3008748
Portable EEG
Electroencephalography (EEG) was invented in the 1920s and uses electrodes on the scalp to measure the brain’s electrical activity. Relative to the other technologies included in this bibliography, EEG is the most affordable and most portable. EEG is used in a variety of consumer-grade technologies, in technologies designed to monitor and enhance athletes’ performance, and in many field-based research projects. The citations below present a selection of this portable EEG research, but it should be noted that in the interests of space, much additional portable EEG research is not included here.
Abdulghani, A. M., Casson, A. J., & Rodriguez-Villegas, E. (2009). Quantifying the Feasibility of Compressive Sensing in Portable Electroencephalography Systems. In D. D. Schmorrow, I. V. Estabrooke, & M. Grootjen (Eds.), Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience (pp. 319–328). Springer. https://doi.org/10.1007/978-3-642-02812-0_38
Armand Larsen, S., Klok, L., Lehn‐Schiøler, W., Gatej, R. & Beniczky, S. (2024). Low‐Cost Portable EEG Device for Bridging The Diagnostic Gap in Resource‐Limited Areas. Epileptic Disorders,1--7. https://doi.org/10.1002/epd2.20266
Aspinall, P., Mavros, P., Coyne, R., & Roe, J. (2015). The Urban Brain: Analysing Outdoor Physical Activity with Mobile EEG. British Journal of Sports Medicine, 49(4), 272–276. https://doi.org/10.1136/bjsports-2012-091877 PMID: 23467965
Bhavnani, S., Parameshwaran, D., Sharma, K. K., Mukherjee, D., Divan, G., Patel, V. & Thiagarajan, T. C. (2022). The Acceptability, Feasibility, and Utility of Portable Electroencephalography to Study Resting-State Neurophysiology in Rural Communities. Frontiers in Human Neuroscience, 16, 802764. https://doi.org/10.3389/fnhum.2022.802764 PMID: 35386581
Biondi, A., Dursun, E., Viana, P. F., Laiou, P., & Richardson, M. P. (2024). New Wearable and Portable EEG Modalities in Epilepsy: The Views of Hospital-Based Healthcare Professionals. Epilepsy & Behavior, 159, 109990. ttps://doi.org/10.1016/j.yebeh.2024.109990
Casson, A. J. (2019). Wearable EEG and Beyond. Biomedical Engineering Letters, 9(1), 53–71. https://doi.org/10.1007/s13534-018-00093-6 PMID: 30956880
Casson, A. J., & Rodriguez-Villegas, E. (2009). Toward Online Data Reduction for Portable Electroencephalography Systems in Epilepsy. IEEE Transactions on Biomedical Engineering, 56(12), 2816–2825. https://doi.org/10.1109/TBME.2009.2027607 PMID: 19643698
Casson, A. J., Yates, D. C., Smith, S. J. M., Duncan, J. S., & Rodriguez-Villegas, E. (2010). Wearable Electroencephalography. IEEE Engineering in Medicine and Biology Magazine, 29(3), 44–56. https://doi.org/10.1109/MEMB.2010.936545 PMID: 20659857
Chen, X., Li, C., Liu, A., McKeown, M. J., Qian, R. & Wang, Z. J. (2021). Toward Open-World Electroencephalogram Decoding Via Deep Learning: A Comprehensive Survey. ArXiv:2112.06654v2. http://arxiv.org/abs/2112.06654
Craik, A., González-España, J. J., Alamir, A., Edquilang, D., Wong, S., Sánchez Rodríguez, L., Feng, J., Francisco, G. E. & Contreras-Vidal, J. L. (2023). Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface. Sensors, 23(13), 5930. https://doi.org/10.3390/s23135930
Dan, J., Vandendriessche, B., Paesschen, W. V., Weckhuysen, D., & Bertrand, A. (2020). Computationally-Efficient Algorithm for Real-Time Absence Seizure Detection in Wearable Electroencephalography. International Journal of Neural Systems, 30(11), 2050035. https://doi.org/10.1142/S0129065720500355 PMID: 32808854
Debener, S., Emkes, R., De Vos, M., & Bleichner, M. (2015). Unobtrusive Ambulatory EEG Using a Smartphone and Flexible Printed Electrodes Around the Ear. Scientific Reports, 5(1), 16743. https://doi.org/10.1038/srep16743 PMCID: PMC4648079
Debener, S., Minow, F., Emkes, R., Gandras, K., & Vos, M. de. (2012). How About Taking a Low-Cost, Small, and Wireless EEG for a Walk? Psychophysiology, 49(11), 1617–1621. https://doi.org/10.1111/j.1469-8986.2012.01471.x PMID: 23013047
Everitt, A., Richards, H., Song, Y., Smith, J., Kobylarz, E., Lukovits, T., Halter, R., & Murphy, E. (2023). EEG electrode localization with 3D iPhone scanning using point-cloud electrode selection (PC-ES). Journal of neural engineering, 20(6), 10.1088/1741-2552/ad12db. https://doi.org/10.1088/1741-2552/ad12db
Gottlibe, M., Rosen, O., Weller, B., Mahagney, A., Omar, N., Khuri, A., Srugo, I., & Genizi, J. (2020). Stroke Identification Using a Portable EEG Device – A Pilot Study. Neurophysiologie Clinique, 50(1), 21–25. https://doi.org/10.1016/j.neucli.2019.12.004 PMID: 32014371
Grootjans, Y., Harrewijn, A., Fornari, L., Janssen, T., de Bruijn, E.R.A., van Atteveldt, N. & Franken, I.H.A. (2024). Getting Closer to Social Interactions Using Electroencephalography in Developmental Cognitive Neursocience. Developmental Cognitive Neuroscience, 67, 101391. https://doi.org/10.1016/j.dcn.2024.101391
He, C., Chen, Y. Y., Phang, C. R., Stevenson, C., Chen, I. P., Jung, T. P., & Ko, L. W. (2023). Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems Review. IEEE journal of biomedical and health informatics, PP, 10.1109/JBHI.2023.3239053. Advance online publication. https://doi.org/10.1109/JBHI.2023.3239053
Huang, S.-C. L., Chiang, N. C., Kuo, N.-F., & Chen, Y.-J. (2019). An Exploratory Approach for Using EEG to Examine Person-Environment Interaction. Landscape Research, 44(6), 702–715. https://doi.org/10.1080/01426397.2018.1548586
Jebelli, H., Khalili, M. M., & Lee, S. (2019). Mobile EEG-Based Workers’ Stress Recognition by Applying Deep Neural Network. In I. Mutis & T. Hartmann (Eds.), Advances in Informatics and Computing in Civil and Construction Engineering (pp. 173–180). Springer International Publishing. https://doi.org/10.1007/978-3-030-00220-6_21
Jiang, Z., & Zhao, W. (2020). Optimal Selection of Customized Features for Implementing Seizure Detection in Wearable Electroencephalography Sensor. IEEE Sensors Journal, 20(21), 12941–12949. https://doi.org/10.1109/JSEN.2020.300373312
Jillian T. Teo, Stuart J. Johnstone, Susan J. Thomas, Use of portable devices to measure brain and heart activity during relaxation and comparative conditions: Electroencephalogram, heart rate variability, and correlations with self-report psychological measures, International Journal of Psychophysiology, 2023, ISSN 0167-8760, https://doi.org/10.1016/j.ijpsycho.2023.04.002.
Kosch, T., Funk, M., Schmidt, A., & Chuang, L. L. (2018). Identifying Cognitive Assistance with Mobile Electroencephalography: A Case Study with In-Situ Projections for Manual Assembly. Proceedings of the ACM on Human-Computer Interaction, 2(EICS), 11:1-11:20. https://doi.org/10.1145/3229093
Ladouce, S., Donaldson, D. I., Dudchenko, P. A., & Ietswaart, M. (2019). Mobile EEG Identifies the Re-Allocation of Attention During Real-World Activity. Scientific Reports, 9(1), 15851. https://doi.org/10.1038/s41598-019-51996-y PMCID: PMC6825178
Lareau, E., Lesage, F., Pouliot, P., Lan, J. L., Sawan, M., & Nguyen, D. (2011). Multichannel Wearable System Dedicated for Simultaneous Electroencephalography/Near-Infrared Spectroscopy Real-Time Data Acquisitions. Journal of Biomedical Optics, 16(9), 096014. https://doi.org/10.1117/1.3625575
Lau-Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in Research on Neurodevelopmental Disorders: Opportunities and Challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635 PMCID: PMC6534774
Lazarou, I., Oikonomou, V. P., Mpaltadoros, L., Grammatikopoulou, M., Alepopoulos, V., Stavropoulos, T. G., Bezerianos, A., Nikolopoulos, S., Kompatsiaris, I., Tsolaki, M., & RADAR-AD Consortium (2023). Eliciting brain waves of people with cognitive impairment during meditation exercises using portable electroencephalography in a smart-home environment: a pilot study. Frontiers in aging neuroscience, 15, 1167410. https://doi.org/10.3389/fnagi.2023.1167410 PMID: 37388185
Li, H., Wang, D., Chen, J., Luo, X., Li, J., & Xing, X. (2019). Pre-Service Fatigue Screening for Construction Workers Through Wearable EEG-Based Signal Spectral Analysis. Automation in Construction, 106, 102851. https://doi.org/10.1016/j.autcon.2019.102851
Lin, W., Chen, Q., Jiang, M., Tao, J., Liu, Z., Zhang, X., Wu, L., Xu, S., Kang, Y., & Zeng, Q. (2020). Sitting or Walking? Analyzing the Neural Emotional Indicators of Urban Green Space Behavior with Mobile EEG. Journal of Urban Health, 97(2), 191–203. https://doi.org/10.1007/s11524-019-00407-8. PMCID: PMC7101459
Lockwood Estrin, G., Bhavnani, S., Goodwin, A., Arora, R., Divan, G., Haartsen, R., Mason, L., Patel, V., Johnson, M. H., & Jones, E. J. H. (2023). From the lab to the field: acceptability of using electroencephalography with Indian preschool children. Wellcome open research, 7, 99. https://doi.org/10.12688/wellcomeopenres.17334.2
Madison Milne-Ives, Jonas Dunn-Henriksen, Lykke Blaabjerg, Brendan Mclean, Rohit Shankar, Edward Meinert, At home EEG monitoring technologies for people with epilepsy and intellectual disabilities: A scoping review, Seizure, 2023, ISSN 1059-1311, https://doi.org/10.1016/j.seizure.2023.05.007.
Martins, I. P., Westerfield, M., Lopes, M., Maruta, C., & Gil-da-Costa, R. (2020). Brain State Monitoring for the Future Prediction of Migraine Attacks. Cephalalgia, 40(3), 255–265. https://doi.org/10.1177/0333102419877660 PMID: 31530007
Mehdi, M., Hennig, L., Diemer, F., Dode, A., Pryss, R., Schlee, W., Reichert, M., & Hauck, F. J. (2021). Towards Mobile-Based Preprocessing Pipeline for Electroencephalography (EEG) Analyses: The Case of Tinnitus. In J. Ye, M. J. O’Grady, G. Civitarese, & K. Yordanova (Eds.), Wireless Mobile Communication and Healthcare (pp. 67–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-70569-5_5
Milne-Ives, M., Duun-Henriksen, J., Blaabjerg, L., Mclean, B., Shankar, R. & Meinert, E. (2023). At Home EEG Monitoring Technologies for People with Epilepsy and Intellectual Disabilities: A Scoping Review. Seizure, 110, 11–20. https://doi.org/10.1016/j.seizure.2023.05.007
Mulkey, M. A., Gantt, L. T., Hardin, S. R., Munro, C. L., Everhart, D. E., Kim, S., Schoeman, A. M., Roberson, D. W., McAuliffe, M. & Olson, D. M. (2022). Rapid Handheld Continuous Electroencephalogram (EEG) Has the Potential to Detect Delirium in Older Adults. Dimensions of Critical Care Nursing: DCCN, 41(1), 29–35. https://doi.org/10.1097/DCC.0000000000000502 PMID: 34817959
Mustile, M., Kourtis, D., Ladouce, S., Learmonth, G., Edwards, M. G., Donaldson, D. I., & Ietswaart, M. (n.d.). Mobile EEG Reveals Functionally Dissociable Dynamic Processes Supporting Real-World Ambulatory Obstacle Avoidance: Evidence for Early Proactive Control. European Journal of Neuroscience, 1-14. https://doi.org/10.1111/ejn.15120
Nagar, P., & Sethia, D. (2019). Brain Mapping Based Stress Identification Using Portable EEG Based Device. 2019 11th International Conference on Communication Systems Networks, 601–606. https://doi.org/10.1109/COMSNETS.2019.8711009
Neale, C., Aspinall, P., Roe, J., Tilley, S., Mavros, P., Cinderby, S., Coyne, R., Thin, N., & Thompson, C. W. (2020). The Impact of Walking in Different Urban Environments on Brain Activity in Older People. Cities & Health, 4(1), 94–106. https://doi.org/10.1080/23748834.2019.1619893
Nielsen, J. M., Rades, D. & Kjaer, T. W. (2021). Wearable Electroencephalography for Ultra-Long-Term Seizure Monitoring: A Systematic Review and Future Prospects. Expert Review of Medical Devices, 18(sup1), 57–67. https://doi.org/10.1080/17434440.2021.2012152
Nordin, A. D., Hairston, W. D., & Ferris, D. P. (2018). Dual-Electrode Motion Artifact Cancellation for Mobile Electroencephalography. Journal of Neural Engineering, 15(5), 056024. https://doi.org/10.1088/1741-2552/aad7d713
Park, J. L., & Donaldson, D. I. (2019). Detecting the Neural Correlates of Episodic Memory with Mobile EEG: Recollecting Objects in the Real World. NeuroImage, 193, 1–9. https://doi.org/10.1016/j.neuroimage.2019.03.013
Peddi, A., Sendi, M. S. E., Minton, S. T., Hinojosa, C. A., West, E., Langhinrichsen-Rohling, R., Ressler, K. J., Calhoun, V. D. & van Rooij, S. J. H. (2024). Towards Predicting PTSD Symptom Severity Using Portable EEG-derived Biomarkers. medRxiv. https://doi.org/10.1101/2024.07.17.24310570
Qiu, J. M., Casey, M. A., & Diamond, S. G. (2019). Assessing Feedback Response With a Wearable Electroencephalography System. Frontiers in Human Neuroscience, 13, 258. https://doi.org/10.3389/fnhum.2019.00258 PMCID: PMC6669939
Radüntz, T., & Meffert, B. (2019). User Experience of 7 Mobile Electroencephalography Devices: Comparative Study. JMIR MHealth and UHealth, 7(9), e14474. https://doi.org/10.2196/14474 PMCID: PMC6751099
Reiser, J. E., Wascher, E., & Arnau, S. (2019). Recording Mobile EEG in an Outdoor Environment Reveals Cognitive-Motor Interference Dependent on Movement Complexity. Scientific Reports, 9(1), 13086. https://doi.org/10.1038/s41598-019-49503-4 PMCID: PMC6739372
Ries, A. J., Touryan, J., Vettel, J., McDowell, K., & Hairston, W. D. (2014). A Comparison of Electroencephalography Signals Acquired from Conventional and Mobile Systems. Journal of Neuroscience and Neuroengineering, 3(1), 10–20. https://doi.org/10.1166/jnsne.2014.1092
Sokolov, E., Bachir, D. H. A., Sakadi, F., Williams, J., Vogel, A. C., Schaekermann, M., Tassiou, N., Bah, A. K., Khatri, V., Hotan, G. C., Ayub, N., Leung, E., Fantaneanu, T. A., Patel, A., Vyas, M., Milligan, T., Villamar, M. F., Hoch, D., Purves, S., ... Mateen, F. J. (2020). Tablet-Based Electroencephalography Diagnostics for Patients with Epilepsy in the West African Republic of Guinea. European Journal of Neurology, 27(8), 1570–1577. https://doi.org/10.1111/ene.14291
Stangl, M., Maoz, S. L. & Suthana, N. (2023). Mobile Cognition: Imaging the Human Brain in the 'Real World'. Nature Reviews: Neuroscience, 24(6), 347–362. https://doi.org/10.1038/s41583-023-00692-y
Stopczynski, A., Stahlhut, C., Petersen, M. K., Larsen, J. E., Jensen, C. F., Ivanova, M. G., Andersen, T. S., & Hansen, L. K. (2014). Smartphones as Pocketable Labs: Visions for Mobile Brain Imaging and Neurofeedback. International Journal of Psychophysiology, 91(1), 54–66. https://doi.org/10.1016/j.ijpsycho.2013.08.007
Tan, S. H. J., Wong, J. N., & Teo, W.-P. (2023). Is neuroimaging ready for the classroom? A systematic review of hyperscanning studies in learning. NeuroImage, 281, 120367. https://doi.org/10.1016/j.neuroimage.2023.120367
Titgemeyer, Y., Surges, R., Altenmüller, D.-M., Fauser, S., Kunze, A., Lanz, M., Malter, M. P., Nass, R. D., Podewils, F. von, Remi, J., Spiczak, S. von, Strzelczyk, A., Ramos, R. M., Kutafina, E., & Jonas, S. M. (2020). Can Commercially Available Wearable EEG Devices be Used for Diagnostic Purposes? An Explorative Pilot Study. Epilepsy & Behavior, 103. https://doi.org/10.1016/j.yebeh.2019.106507 PMID: 31645318
Vacas, S., McInrue, E., Gropper, M. A., Maze, M., Zak, R., Lim, E., & Leung, J. M. (2016). The Feasibility and Utility of Continuous Sleep Monitoring in Critically Ill Patients Using a Portable Electroencephalography Monitor. Anesthesia and Analgesia, 123(1), 206–212. https://doi.org/10.1213/ANE.0000000000001330 PMCID: PMC5493322
Varga, L. (n.d.). Overview of EEG Research in Early Childhood Education: An International Perspective. Training and Practice, 16(3), 37–44. https://doi.org/10.17165/TP.2018.3.4
Von Lühmann, A., Wabnitz, H., Sander, T., & Müller, K.-R. (2016, October 13). Miniaturized CW NIRS for Integration and Hybridization with Mobile EEG / ECG / EMG and Accelerometer. [Paper presentation]. The Society for functional Near Infrared Spectroscopy Biennial Meeting 2016, Paris, France. https://www.researchgate.net/publication/311183763_Miniaturized_CW_NIRS_for_integration_and_hybridization_with_mobile_EEG_ECG_EMG_and_Accelerometer
Von Lühmann, A., Wabnitz, H., Sander, T., & Müller, K.-R. (2017). M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. IEEE Transactions on Biomedical Engineering, 64(6), 1199–1210. https://doi.org/10.1109/TBME.2016.2594127
Wang, D., Chen, J., Zhao, D., Dai, F., Zheng, C., & Wu, X. (2017). Monitoring Workers’ Attention and Vigilance in Construction Activities Through a Wireless and Wearable Electroencephalography System. Automation in Construction, 82, 122–137. https://doi.org/10.1016/j.autcon.2017.02.001
Ward, J., Pinti, P., Amft, O., & Van Laerhoven, K. (2019). Wearables and the Brain. IEEE Pervasive Computing, 18, 94–100. https://doi.org/10.1109/MPRV.2019.2898536
Wilkinson, C. M., Burrell, J. I., Kuziek, J. W. P., Thirunavukkarasu, S., Buck, B. H., & Mathewson, K. E. (2020). Predicting Stroke Severity with a 3-min Recording from the Muse Portable EEG System for Rapid Diagnosis of Stroke. Scientific Reports, 10(1), 18465. https://doi.org/10.1038/s41598-020-75379-w PMCID: PMC7595199
Williams, N. S., McArthur, G. M., & Badcock, N. A. (2020). 10 Years of EPOC: A Scoping Review of Emotiv’s Portable EEG Device BioRxiv. Advance online publication. https://doi.org/10.1101/2020.07.14.202085
Yokota, Y., Tanaka, S., Miyamoto, A., & Naruse, Y. (2017). Estimation of Human Workload from the Auditory Steady-State Response Recorded via a Wearable Electroencephalography System during Walking. Frontiers in Human Neuroscience, 11, 314. https://doi.org/10.3389/fnhum.2017.00314 PMCID: PMC5468449
Zhang, Q., Wang, P., Liu, Y., Peng, B., Zhou, Y., Zhou, Z., Tong, B., Qiu, B., Zheng, Y., & Dai, Y. (2018). A Real-Time Wireless Wearable Electroencephalography System Based on Support Vector Machine for Encephalopathy Daily Monitoring. International Journal of Distributed Sensor Networks, 14(5) 1-9. https://doi.org/10.1177/1550147718779562
Zink, R., Hunyadi, B., Huffel, S. V., & Vos, M. D. (2016). Mobile EEG on the Bike: Disentangling Attentional and Physical Contributions to Auditory Attention Tasks. Journal of Neural Engineering, 13(4), 046017. https://doi.org/10.1088/1741-2560/13/4/046017